OPTIMIZATION OF INTEGRATED MULTI-TROPHIC AQUACULTURE (IMTA) CULTIVATION IN AQUARIA: A REVIEW OF PRODUCTIVITY, ECOSYSTEM BALANCE, AND ENVIRONMENTAL SUSTAINABILITY
Authors
Fauziyah Nur Afisha , Zahidah Hasan , Iskandar Iskandar , Kiki Haetami , Asep Sahidin , Roffi GrandiosaDOI:
10.29303/jp.v15i4.1719Published:
2025-08-06Issue:
Vol. 15 No. 4 (2025): JURNAL PERIKANANKeywords:
integrated multi-trophic aquaculture; sustainable aquaculture; aesthetics; IMTA; benefit-cost ratioArticles
Downloads
How to Cite
Downloads
Abstract
This study aimed to evaluate the effectiveness of an aquarium-based Integrated Multi-Trophic Aquaculture (IMTA) system compared to a monoculture system. The research was conducted from November to December 2024 at the Aquaculture Laboratory, Faculty of Fisheries and Marine Sciences, Universitas Padjadjaran. The experimental design used was a Completely Randomized Design (CRD) with five treatments and three replications, involving combinations of guppy fish (Poecilia reticulata), Egeria densa aquatic plants, Ramshorn snails (Planorbella duryi), and Orange Rili shrimp (Neocaridina davidi). Parameters observed included water quality (pH, DO, nitrate, phosphate, turbidity, temperature), organism growth, benefit-cost ratio (BCR), and aesthetic value using a 1–5 scale. The results showed that Treatment E (combining fish, plants, snails, and shrimp) provided the best performance, with the most stable water quality, highest organism growth, highest BCR, and an average aesthetic score of 4.89. The IMTA system was shown to improve resource efficiency, reduce biological waste, and enhance the visual appeal of aquarium-based aquaculture. These findings support the application of aquarium-scale IMTA as a sustainable aquaculture model that is ecologically, economically, and aesthetically adaptive.
References
Abreu, M. H., Varela, D. A., Henriques, V., Ferreira, G. D., & Buschmann, A. H. (2011). Traditional vs. integrated multi-trophic aquaculture of Gracilaria chilensis: productivity and quality of seaweed. Aquaculture, 293(3–4), 211–220
Ahmed, N., & Thompson, S. (2019). The blue dimensions of aquaculture: a global synthesis. Science of the Total Environment, 652, 851–861
Andriani, Y., Yustiati, A., & Cahya, F. (2024). Efektivitas pakan berbasis astaxanthin terhadap peningkatan warna ikan hias. Jurnal Akuakultur Tropis, 9(1), 22–31
Arief, M., Wibowo, E. S., & Purnomo, A. (2023). Studi kandungan fosfat pada perairan budidaya ikan hias. Jurnal Perikanan Air Tawar, 13(2), 44–51
Astria, E. (2014). Pengaruh pH terhadap kelangsungan hidup ikan nila. Jurnal Akuakultur Indonesia, 2(1), 37–43
Bachtiar, I. (2002). Pengaruh stres terhadap kualitas warna ikan guppy. Jurnal Ilmu Perikanan Indonesia, 4(1), 14–18
Cahya, F., Yustiati, A., & Andriani, Y. (2021). Performa ikan dalam sistem akuakultur multistrofik. Jurnal Akuakultur Indonesia, 20(3), 101–110
Cassel, D. K., & Barao, J. M. (2000). Nitrate toxicity in aquaculture systems. Aquatic Research Reports, 8(2), 18–24
Chopin, T., Cooper, J. A., Reid, G., Cross, S., & Moore, C. (2012). Open-water integrated multi-trophic aquaculture: environmental biomitigation and economic diversification. Aquaculture Environment Interactions, 2(3), 199–213
Chopin, T., Yarish, C., & Bastarache, S. (2001). Nutrient removal by seaweeds in integrated aquaculture. Journal of Applied Phycology, 13(5), 463–472
Chopin, T., Robinson, S. M. C., Troell, M., Neori, A., Buschmann, A. H., & Fang, J. (2008). Multitrophic integration for sustainable marine aquaculture. Aquaculture Economics & Management, 12(2), 99–113
Correia, M., Neves, A., Valente, S., & Rosa, R. (2020). Effect of IMTA systems on fish health and performance. Aquaculture Reports, 17, 100339
Craig, S. R., Gatlin, D. M., & Overton, J. L. (2017). Nutritional strategies in closed-loop aquaculture. Journal of the World Aquaculture Society, 48(3), 245–260
Dahril, T., Suyanto, A., & Ali, H. (2017). Studi kualitas air pada kolam intensif. Jurnal Ilmu Perairan, 6(2), 90–97
Drozdz, A., Wystalska, K., Malina, R., & Zieminska, M. (2020). The sustainability of aquaculture: the role of IMTA. Sustainability, 12(3), 1239
Dyah Ayu, A., Puspitasari, N., & Haryanto, A. (2020). Performa udang Neocaridina dalam akuarium sistem tertutup. Jurnal Akuakultur Hias Indonesia, 6(1), 11–18
Effendie, M. I. (1997). Biologi perikanan. Yogyakarta: Yayasan Pustaka Nusatama.
El-Sayed, A. F. M. (2020). Tilapia culture (2nd ed.). London: Academic Press.
García, M. E., & Feijoó, C. (2000). Aquatic plants in nutrient removal. Hydrobiologia, 432(2–3), 101–109
Ghosh, S., Das, R., & Roy, D. (2025). Ecological functions of aquatic plants in IMTA systems. Journal of Aquatic Systems, 29(1), 45–56
Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research (2nd ed.). New York: John Wiley & Sons.
Han Yang, L., Chang, Y., & Tang, R. (2025). Role of aquatic macrophytes in nutrient uptake. Aquaculture Environment Research, 36(2), 109–119
Hasan, M. R., & Soto, D. (2017). Guidelines for sustainable aquaculture. Rome: FAO Fisheries Technical Paper No. 567
Hendrayana, D., Rachmawati, Y., & Rahayu, T. (2022). Pengaruh kadar fosfat pada pertumbuhan fitoplankton. Jurnal Perikanan Tropis, 8(2), 28–34
Hepher, B. (1988). Nutrition of pond fishes. Cambridge: Cambridge University Press.
Hamsiah, N., Yustiati, A., & Cahya, F. (2021). Evaluasi sistem IMTA terhadap performa ikan nila. Jurnal Akuakultur Berkelanjutan, 7(3), 134–143
Indarti, N., Setiawan, H., & Widodo, A. (2012). Pengaruh pH terhadap aktivitas metabolik ikan. Jurnal Perikanan Universitas Diponegoro, 5(1), 49–57
Kelabora, J. L., & Dominggas, Y. (2010). Hubungan suhu air dan metabolisme ikan. Jurnal Ilmiah Perikanan, 2(2), 25–32
Khanjani, M. H., Sajjadi, M. M., & Alizadeh, M. (2022). Aquatic species responses to water parameters. Aquaculture Reports, 19, 101412
Keer, T. S., Janzen, S., & Bell, M. (2024). Aesthetic scoring of aquaculture systems. Aquaculture Design Journal, 13(1), 14–24
Kortet, R. (2024). Perceptions of aquaculture ecosystem aesthetics. Fisheries and Society, 11(1), 33–41
Mahmudur, R. A., Elahi, F., & Zaman, M. A. (2024). Nutrient uptake efficiency of aquatic plants. Journal of Aquatic Botany, 16(1), 55–66
Macqy, L. M., Rachman, R. M., & Utama, A. (2013). Dissolved oxygen dan dampaknya terhadap budidaya. Jurnal Air Tawar Tropis, 4(2), 69–74
Putra, A. D., & Mulyono, H. (2023). Strategi IMTA untuk sistem akuakultur urban. Jurnal Perikanan Berbasis Ekosistem, 15(1), 18–27
Ricker, W. E. (1979). Growth rates in fish populations. Fisheries Research Board of Canada Bulletin, 191, 1–34
Rusco, A., Kurniawan, D., & Hendarto, Y. (2024). Diversifikasi trofik dan nilai estetika dalam akuarium IMTA. Jurnal Akuakultur Tropis, 9(1), 12–22
Santoso, A., Rinaldi, D., & Jaya, I. (2023). Analisis kualitas warna air dalam sistem budidaya. Jurnal Ilmu Perairan, 14(3), 55–64
Sri-uam, J., Kulseng, P., & Pongprapan, P. (2016). Nutrient management using aquatic plants. Asian Journal of Environmental Biology, 15(2), 145–150
Stoltenow, C. L., & Lardy, G. P. (1998). Nitrate poisoning in fish systems. Aquatic Safety Reports, 3(1), 1–5
Subamia, I. W., & Himawan, W. (2018). Budidaya ikan hias dengan pendekatan ekologi. Prosiding Seminar Nasional Perikanan dan Kelautan, 1, 79–85
Troell, M., Joyce, A., Chopin, T., Neori, A., Buschmann, A. H., & Fang, J. G. (2009). Ecological engineering in aquaculture. Bioscience, 59(1), 27–38
Wijesinghe, W., & Senavirathna, K. (2024). Resilience of Egeria densa in aquaculture tanks. Journal of Aquatic Plant Research, 7(1), 31–40
Zhou, Q., Zhao, Y., & Tan, Y. (2020). Marketing ornamental aquatic species. Aquaculture Economics and Management, 24(4), 367–379
Zulhisyam, A. K., Ismail, I. S., & Wahid, R. (2023). Siput air tawar sebagai indikator kesehatan akuarium. Jurnal Biologi Perairan, 12(2), 65–74.